An adaptive multi-level method for convection diffusion problems

نویسندگان

  • MARTINE MARION
  • ADELINE MOLLARD
چکیده

© SMAI, EDP Sciences, 2000, tous droits réservés. L’accès aux archives de la revue « ESAIM: Modélisation mathématique et analyse numérique » (http://www.esaim-m2an.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equidistribution grids for two-parameter convection–diffusion boundary-value problems

In this article, we propose an adaptive grid based on mesh equidistribution principle for two-parameter convection-diffusion boundary value problems with continuous and discontinuous data. A numerical algorithm based on an upwind finite difference operator and an appropriate adaptive grid is constructed. Truncation errors are derived for both continuous and discontinuous problems. Parameter uni...

متن کامل

Adaptive Finite Volume Element Method for Convection-diffusion-reaction Problems in 3-d∗

We present an adaptive numerical technique for solving steady-state diffusion and convection-diffusion-reaction equations in 3-D using finite volume approximations. Computational results of various model simulations of fluid flow and transport of passive chemicals in non-homogeneous aquifers are presented and discussed.

متن کامل

Adaptive Streamline Diffusion Finite Element Methods for Stationary Convection-diffusion Problems

Adaptive finite element methods for stationary convectiondiffusion problems are designed and analyzed. The underlying discretization scheme is the Shock-capturing Streamline Diffusion method. The adaptive algorithms proposed are based on a posteriori error estimates for this method leading to reliable methods in the sense that the desired error control is guaranteed. A priori error estimates ar...

متن کامل

A discontinuous Galerkin method for optimal control problems governed by a system of convection-diffusion PDEs with nonlinear reaction terms

In this paper, we study the numerical solution of optimal control problems governed by a system of convection diffusion PDEs with nonlinear reaction terms, arising from chemical processes. The symmetric interior penalty Galerkin (SIPG) method with upwinding for the convection term is used for discretization. Residual-based error estimators are used for the state, the adjoint and the control var...

متن کامل

Adaptive Discontinuous Galerkin Approximation of Optimal Control Problems Governed by Transient Convection-Diffusion Equations

In this paper, we investigate an a posteriori error estimate of a control constrained optimal control problem governed by a time-dependent convection diffusion equation. Control constraints are handled by using the primal-dual active set algorithm as a semi-smooth Newton method or by adding a Moreau-Yosida-type penalty function to the cost functional. An adaptive mesh refinement indicated by a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017